5 research outputs found

    Analysis and Comparison of Popular Models for Current-Mode Control of Switch Mode Power Supplies

    Get PDF
    Current-mode control is the most popular scheme used for the operation of SMPS (Switch Mode Power Supplies). Current-mode control, also known as current-programmed mode or current-injected control is a multi-loop control scheme that has an inner loop and an outer voltage loop. The current loop controls the inductor peak current while the voltage loop controls the output voltage. The inner loop follows a set program by the outer loop. Some of the most popular small-signal models that predict the small-signal characteristics of current-mode control scheme have been analyzed and compared in this thesis. A PWM dc-dc buck converter in CCM(Continuous Conduction Mode) has been chosen to explain the phenomenon of current-mode control in all these models. Small-signal characteristics are generated in MATLAB using the simplified analytical transfer functions. Some of the important small-signal characteristics include the current loop gain, control-to-output gain with the current-loop closed and outer loop open, audio susceptibility, and output impedance. The two most important models in consideration are: 1) Continuous-Time Model and 2) Peak Current-Mode control Model. Despite the fact that both these models predict the instability of current-mode control at a duty ratio of 0.5, these models differ significantly in deriving the expression for the sampling gain. As a result, their small-signal characteristics differ over a wide frequency range. Also, a very less explored average current mode control is compared with the peak-current mode control based on the similar small-signal characteristics

    Digital memory look-up based implementation of sliding mode control for dc-dc converters

    No full text
    © 2016 Elsevier Ltd. Switched power electronic converters involve different control actions for different system events. A local control strategy may be developed which reacts only to some local information available to each component without any communication between the different system components located far away in real time. The purpose of this paper is to present a low cost memory based control strategy in a dc-dc boost converter. The control employed in this work is based on a sliding-mode hysteretic control strategy where the sliding manifold is derived a priori and stored as a look-up table in digital memory hardware. The proposed control implementation strategy is low cost and offers a robust dynamic response that is used to mitigate many disturbances in the system
    corecore